

General Certificate of Education Advanced Level Examination
June 2011

Mathematics

MPC3

Unit Pure Core 3

Monday 13 June 20119.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet. The diagram shows the curve with equation $y=\ln (6 x)$.

(a) State the x-coordinate of the point of intersection of the curve with the x-axis.
(1 mark)
(b) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(2 marks)
(c) Use Simpson's rule with 6 strips (7 ordinates) to find an estimate for $\int_{1}^{7} \ln (6 x) \mathrm{d} x$, giving your answer to three significant figures.

2 (a) (i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $y=x \mathrm{e}^{2 x}$. (3 marks)
(ii) Find an equation of the tangent to the curve $y=x \mathrm{e}^{2 x}$ at the point $\left(1, \mathrm{e}^{2}\right) \cdot(2$ marks $)$
(b) Given that $y=\frac{2 \sin 3 x}{1+\cos 3 x}$, use the quotient rule to show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{k}{1+\cos 3 x}
$$

where k is an integer.

3 The curve $y=\cos ^{-1}(2 x-1)$ intersects the curve $y=\mathrm{e}^{x}$ at a single point where $x=\alpha$.
(a) Show that α lies between 0.4 and 0.5 .
(b) Show that the equation $\cos ^{-1}(2 x-1)=\mathrm{e}^{x}$ can be written as $x=\frac{1}{2}+\frac{1}{2} \cos \left(\mathrm{e}^{x}\right)$.
(1 mark)
(c) Use the iteration $x_{n+1}=\frac{1}{2}+\frac{1}{2} \cos \left(\mathrm{e}^{x_{n}}\right)$ with $x_{1}=0.4$ to find the values of x_{2} and x_{3}, giving your answers to three decimal places.

4 (a) (i) Solve the equation $\operatorname{cosec} \theta=-4$ for $0^{\circ}<\theta<360^{\circ}$, giving your answers to the nearest 0.1°.
(ii) Solve the equation

$$
2 \cot ^{2}\left(2 x+30^{\circ}\right)=2-7 \operatorname{cosec}\left(2 x+30^{\circ}\right)
$$

for $0^{\circ}<x<180^{\circ}$, giving your answers to the nearest 0.1°.
(b) Describe a sequence of two geometrical transformations that maps the graph of $y=\operatorname{cosec} x$ onto the graph of $y=\operatorname{cosec}\left(2 x+30^{\circ}\right)$.
$5 \quad$ The functions f and g are defined with their respective domains by

$$
\begin{array}{ll}
\mathrm{f}(x)=x^{2} & \text { for all real values of } x \\
\mathrm{~g}(x)=\frac{1}{2 x+1} & \text { for real values of } x, \quad x \neq-0.5
\end{array}
$$

(a) Explain why f does not have an inverse.
(b) The inverse of g is g^{-1}. Find $\mathrm{g}^{-1}(x)$.
(c) State the range of g^{-1}.
(d) Solve the equation $\mathrm{fg}(x)=\mathrm{g}(x)$.

6 (a) Given that $3 \ln x=4$, find the exact value of x.
(b) By forming a quadratic equation in $\ln x$, solve $3 \ln x+\frac{20}{\ln x}=19$, giving your answers for x in an exact form.

7 (a) On separate diagrams:
(i) sketch the curve with equation $y=|3 x+3|$;
(ii) sketch the curve with equation $y=\left|x^{2}-1\right|$.
(b) (i) Solve the equation $|3 x+3|=\left|x^{2}-1\right|$.
(ii) Hence solve the inequality $|3 x+3|<\left|x^{2}-1\right|$.

8 Use the substitution $u=1+2 \tan x$ to find

$$
\int \frac{1}{(1+2 \tan x)^{2} \cos ^{2} x} \mathrm{~d} x
$$

9 (a) Use integration by parts to find $\int x \ln x \mathrm{~d} x$.
(b) Given that $y=(\ln x)^{2}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(c) The diagram shows part of the curve with equation $y=\sqrt{x} \ln x$.

The shaded region R is bounded by the curve $y=\sqrt{x} \ln x$, the line $x=\mathrm{e}$ and the x-axis from $x=1$ to $x=\mathrm{e}$.

Find the volume of the solid generated when the region R is rotated through 360° about the x-axis, giving your answer in an exact form.

END OF QUESTIONS

