

General Certificate of Education Advanced Level Examination June 2011

Mathematics

MPC3

Unit Pure Core 3

Monday 13 June 2011 9.00 am to 10.30 am

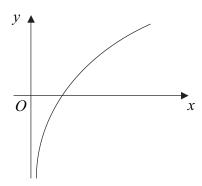
For this paper you must have:

the blue AQA booklet of formulae and statistical tables.
You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions


- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

 Unless stated otherwise, you may quote formulae, without proof, from the booklet. 1 The diagram shows the curve with equation $y = \ln(6x)$.

- (a) State the x-coordinate of the point of intersection of the curve with the x-axis. (1 mark)
- **(b)** Find $\frac{dy}{dx}$. (2 marks)
- Use Simpson's rule with 6 strips (7 ordinates) to find an estimate for $\int_{1}^{7} \ln(6x) dx$, giving your answer to three significant figures. (4 marks)

2 (a) (i) Find
$$\frac{dy}{dx}$$
 when $y = xe^{2x}$. (3 marks)

- (ii) Find an equation of the tangent to the curve $y = xe^{2x}$ at the point $(1, e^2)$. (2 marks)
- (b) Given that $y = \frac{2 \sin 3x}{1 + \cos 3x}$, use the quotient rule to show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{k}{1 + \cos 3x}$$

where k is an integer. (4 marks)

3

- The curve $y = \cos^{-1}(2x 1)$ intersects the curve $y = e^x$ at a single point where $x = \alpha$.
 - (a) Show that α lies between 0.4 and 0.5. (2 marks)
 - Show that the equation $\cos^{-1}(2x-1) = e^x$ can be written as $x = \frac{1}{2} + \frac{1}{2}\cos(e^x)$.
 - Use the iteration $x_{n+1} = \frac{1}{2} + \frac{1}{2}\cos(e^{x_n})$ with $x_1 = 0.4$ to find the values of x_2 and x_3 , giving your answers to three decimal places. (2 marks)
- **4 (a) (i)** Solve the equation $\csc\theta = -4$ for $0^{\circ} < \theta < 360^{\circ}$, giving your answers to the nearest 0.1°. (2 marks)
 - (ii) Solve the equation

$$2\cot^2(2x + 30^\circ) = 2 - 7\csc(2x + 30^\circ)$$

for $0^{\circ} < x < 180^{\circ}$, giving your answers to the nearest 0.1°. (6 marks)

- (b) Describe a sequence of two geometrical transformations that maps the graph of $y = \csc x$ onto the graph of $y = \csc(2x + 30^\circ)$. (4 marks)
- 5 The functions f and g are defined with their respective domains by

$$f(x) = x^2$$
 for all real values of x

$$g(x) = \frac{1}{2x+1}$$
 for real values of x , $x \neq -0.5$

- (a) Explain why f does not have an inverse. (1 mark)
- **(b)** The inverse of g is g^{-1} . Find $g^{-1}(x)$. (3 marks)
- (c) State the range of g^{-1} . (1 mark)
- (d) Solve the equation fg(x) = g(x). (3 marks)

4

6 (a) Given that
$$3 \ln x = 4$$
, find the exact value of x. (1 mark)

- (b) By forming a quadratic equation in $\ln x$, solve $3 \ln x + \frac{20}{\ln x} = 19$, giving your answers for x in an exact form. (5 marks)
- **7 (a)** On separate diagrams:

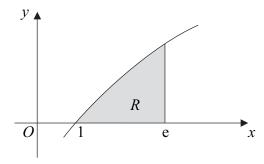
(i) sketch the curve with equation
$$y = |3x + 3|$$
; (2 marks)

(ii) sketch the curve with equation
$$y = |x^2 - 1|$$
. (3 marks)

(b) (i) Solve the equation
$$|3x + 3| = |x^2 - 1|$$
. (5 marks)

(ii) Hence solve the inequality
$$|3x+3| < |x^2-1|$$
. (2 marks)

8 Use the substitution
$$u = 1 + 2 \tan x$$
 to find


$$\int \frac{1}{(1+2\tan x)^2 \cos^2 x} \, \mathrm{d}x \tag{5 marks}$$

9 (a) Use integration by parts to find
$$\int x \ln x \, dx$$
. (3 marks)

(b) Given that
$$y = (\ln x)^2$$
, find $\frac{dy}{dx}$. (2 marks)

(c) The diagram shows part of the curve with equation $y = \sqrt{x} \ln x$.

The shaded region R is bounded by the curve $y = \sqrt{x} \ln x$, the line x = e and the x-axis from x = 1 to x = e.

Find the volume of the solid generated when the region R is rotated through 360° about the x-axis, giving your answer in an exact form. (6 marks)

END OF QUESTIONS

Copyright © 2011 AQA and its licensors. All rights reserved.

